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Alzheimer’s disease can be detected early through biomarkers such as tau positron emission tomography (PET) imaging, which shows
abnormal protein accumulations in the brain. The standardized uptake value ratio (SUVR) is often used to quantify tau-PET imaging,
but topological information from multiple brain regions is also linked to tau pathology. Here a new method was developed to investigate
the correlations between brain regions using subject-level tau networks. Participants with cognitive normal (74), early mild cognitive
impairment (35), late mild cognitive impairment (32), and Alzheimer’s disease (40) were included. The abnormality network from
each scan was constructed to extract topological features, and 7 functional clusters were further analyzed for connectivity strengths.
Results showed that the proposed method performed better than conventional SUVR measures for disease staging and prodromal sign
detection. For example, when to differ healthy subjects with and without amyloid deposition, topological biomarker is significant with
P < 0.01, SUVR is not with P > 0.05. Functionally significant clusters, i.e. medial temporal lobe, default mode network, and visual-related
regions, were identified as critical hubs vulnerable to early disease conversion before mild cognitive impairment. These findings were
replicated in an independent data cohort, demonstrating the potential to monitor the early sign and progression of Alzheimer’s disease
from a topological perspective for individual.
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Introduction
Neurofibrillary tangles (NFT) are caused by hyperphosphorylated
tau buildup in the brain. Alzheimer’s disease patients have NFT
even during the normal cognitive stage (Cho et al. 2016). Trans-
entorhinal areas of the medial temporal lobe often show early tau
accumulation (Johnson et al. 2016). As the illness progressed, this
accumulation gradually spread to the cerebral cortex (Braak and
Braak 1995).

Positron emission tomography (PET) is a noninvasive imaging
technology that can detect tau accumulation. Radioactive tracer
such as 18F-flortaucipir (18F-AV-1451) is injected into the vein and
binds to specific types of NFT in the brain (Chien et al. 2013;
Xia et al. 2013). The difference in tracer uptake between gray
matter and surrounding white matter can be visually examined.
Although visual evaluation agrees well with postmortem results
(Leuzy et al. 2019), it relies on expertise from nuclear medicine
physicians (Tian et al. 2022). Another method to quantify a tau-
PET scan is the standardized uptake value ratio (SUVR), which
compares the target area’s mean uptake value with that of the ref-
erence region’s. Unlike the diffuse amyloid-β distribution, which

is assessed as global cortical uptake, tau accumulation has a
hierarchical spread pattern (Schöll et al. 2016). “AD-signature”
areas with higher tau accumulation rates were used to differ-
entiate Alzheimer’s disease stages (Jack et al. 2017; Maass et al.
2017), and found to correlate with cerebral cortical atrophy (Xia
et al. 2017; Pelkmans et al. 2021) and also inverse correlate with
glucose metabolism (Ossenkoppele et al. 2016; Whitwell et al.
2018). Several investigations have duplicated in vivo Braak staging
using 18F-Flortaucipir scans (Schöll et al. 2016; Schwarz et al.
2016; Biel et al. 2021). While SUVR is complimentary to visual
evaluation, it may not capture individual-specific tracer uptake
pattern (Ossenkoppele et al. 2016; Young et al. 2022), just like
Braak staging may not apply to individuals with abnormal tau
accumulation in the neocortex and cortices (Ferreira et al. 2020).

Recently, topological analysis has been acknowledged as a
powerful research tool for neurodegenerative diseases (Rubinov
and Sporns 2010; Seghier and Price 2018; de Schotten and Forkel
2022). Such an approach aims to analyze data with underly-
ing geometric structures from high-dimensional relationships,
which can be effective for analyzing the image from a global
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perspective rather than a regional one. Most of the existing efforts
were based on magnetic resonance imaging (MRI) imaging; for
example, diffusion tensor imaging offers structural information
on axonal pathways, while functional MRI provides correlations
of the blood-oxygenation-level-dependent signal between brain
regions (Iturria-Medina et al. 2007; Zalesky and Fornito 2009;
Galvin et al. 2011). Structural and functional connectivity can be
measured either at group or individual level. On the other hand,
metabolic connectivity using 18F-FDG-PET is mostly based on
group level analysis (Yakushev et al. 2017; Sala and Perani 2019).
Several studies attempt to distinguish disease stages by compar-
ing metabolic connectivity in-between groups (Chung et al. 2016;
Huang et al. 2018; Li and Chen 2019). The accumulation of the NFT,
on the other hand, is not evenly distributed but rather follows a
predictable spatial pattern in the brain. For example, the group-
level connectivity pattern was found following the intrinsic net-
work or the gradient of the genes by studying the cross-sectional
participants (Ossenkoppele et al. 2019; Montal et al. 2022). The
derived connectivity often only reflects the average group con-
nection but may not resolve the tau deposition heterogeneity
in individual. Some recent studies have suggested deriving the
FDG metabolic connectivity at the individual brain level based on
relationships in regional activities (Huang et al. 2020; Wang et al.
2020; Yakushev et al. 2022).

In light of these previous efforts, we hypothesize that tau-
PET topological measures could serve as staging markers and
correlate with clinical outcome. Inter- and intra- correlations of
clusters that containing regions with similar functions were of
interest. The proposed framework aims to derive the biomarkers
to (1) perform more accurate staging than conventional composite
SUVR, (2) identify functional hubs sensitive to early disease con-
version before mild cognitive impairment (MCI), and (3) associate
disease progression at the individual level. We examined across
different subject groups and compared the derived topological
biomarkers with clinical outcome. The primary findings were
replicated in 2 independent cohorts.

Materials and methods
Datasets and demographics
The Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Petersen
et al. 2010) provided the data in this study. The included subjects
were classified into 4 groups: normal cognition (CN, 74), early mild
cognitive impairment (EMCI, 35), late mild cognitive impairment
(LMCI, 32), and Alzheimer’s disease (40), based on a combination
of clinical symptoms and neurophysiological tests. EMCI or LMCI
was confirmed based on the WMS-R Logical Memory II Story A
score (Edmonds et al. 2019). The CN group was further subdivided
into amyloid-negative (CN-, 48) and amyloid-positive (CN+, 26).
The CN- group acted as the healthy control, while the other
4 acted as the patient groups. Before each scan, the patient
underwent cognitive assessment, including the Mini-Mental State
Examination (MMSE) and the Clinical Dementia Rating (CDR). The
Harvard Brain Aging Study (HABS) (Dagley et al. 2017) was used
as an independent data cohort to validate the conclusion. The
included dataset consisted of 34 CN-, 21 CN+, and 11 with MCI.
Table 1 shows the demographic information of 2 data cohorts.

Image acquisition and processing
In ADNI, all individuals underwent T1-weighted MRI and 18F-
flortaucipir PET scans. Tau-PET images were acquired 75 min
after radiotracer injection and lasted 30 min (6 frames). For each
individual, MRI scan was picked with the closest date to the PET

scan (mean interval time of 2 months, no more than 6 months). All
subsequent processing was performed in Matlab R2018b unless
otherwise stated. Smoothed reconstructed images were used to
attain a spatial resolution of 8 mm. Motion correction was applied
to dynamic images with a frame-by-frame registration process.
Geometric Transfer Matrix method was used for partial volume
correction (Rousset et al. 1998) before quantifying the regions of
interests (ROIs). Brain parcellation was accomplished by register-
ing PET images to their corresponding MR volume, which was
previously segmented using Freesurfer 7.1.1 (http://surfer.nmr.
mgh.harvard.edu). Consequently, the mean SUVR at each ROI was
calculated by dividing the mean uptake of that region by the
mean uptake of the whole cerebellum. The mean SUVR of all
ROIs can then be utilized to build individual tau-PET network. For
comparison, composite SUVR was calculated by averaging SUVRs
from the Braak staging regions (Maass et al. 2017).

As stated earlier, the CN group was divided into 2 sub-
groups: one with positive amyloid-β deposition (CN+) and one
without evident deposition (CN-). This was confirmed by Amyloid-
PET scan that was performed 50 min after the injection of
18F-flaubetapir for a total of 20 min (4 frames). Patients having
SUVR>1.11 at distinctive ROIs were considered amyloid-positive
(Landau et al. 2012).

Network construction and feature extraction
As stated in Introduction, the structure of the brain imaging data
can be analyzed using the graph theory, thus allowing us to assess
topological features qualitatively and quantitatively. Graph-based
connectivity measurements can characterize the underlying net-
work topology, where the similarity of regional property across
subjects is measured as connectivity. For PET, the most obvious
regional property is SUVR, for which the correlation analysis such
as partial Pearson coefficients can be computed between regions
(Sala et al. 2023). The resulting weighted, undirected network
matrix has nodes representing regions and edges representing
the strength of the connections. By quantifying the changes in
the connectivity, it becomes possible to determine the status of
various neurological diseases at group level.

Conventional group-level network only reflects the average
topological information within the group, while disregarding the
individual difference. We adapted a recently developed method
to detect metabolic abnormalities, which creates individual net-
work connectivity based on a whole-body FDG-PET scan (Sun
et al. 2022). The following steps are executed to obtain tau-PET
network for a subject of interest (Fig. 1): To create a reference
metabolic network, we utilized scans from a control group com-
prising healthy individuals. SUVRs of each pair of brain regions
were computed with partial Pearson correlation analysis (con-
trolling for age and gender), resulting network matrix labeled as
RNet. Next, we added a subject to the control group, forming a
new group to construct a perturbed network matrix, labeled as
PNet. By calculating the difference between PNet and RNet, we
obtained the residual network, which depicted the variation after
introducing that subject. Each edge in the residual network indi-
cated the degree of deviation from the normal value observed in
the control group. Normally, tau-PET network is with weak nodes
and few connected edges. However, when there are alterations in
tau deposition, the network strength increases accordingly. This
difference network is then converted into a Z-score matrix (ZCC)
with Z-test:

ZCC = PNet − RNet
1−RNet2

n−1

(1)
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Table 1. Subject characteristics.

ADNI

CN- CN+ EMCI LMCI AD
(n = 48) (n = 26) (n = 35) (n = 32) (n = 40)

Gender (male/female) 21/27 11/15 25/10 20/12 26/14
Age (years) 70.28(±7.12) 73.37(±7.11) 75.77(±6.51) 76.14(±7.5) 75.31(±7.87)
Education (years) 16.67(±2.10) 16.65(±2.02) 17.14(±2.75) 16.75(±2.67) 15.48(±2.68)
MMSE 29.15(±1.06) 28.81(±1.21) 28.34(±1.84) 27.22(±2.27) 23.63(±2.54)
CDR 0.01(±0.07) 0 0.31(±0.24) 0.53(±0.17) 0.74(±0.25)

HABS

CN- CN+ MCI
(n = 34) (n = 21) (n = 11)

Gender (male/female) 15/19 9/12 2/9
Age (years) 77.63(±4.93) 76.96(±5.63) 81.95(±5.17)
Education (years) 16.29(±2.48) 15.95(±2.73) 16.27(±2.34)
MMSE 29.62(±0.54) 8.57(±1.33) 26.73(±2.09)
CDR 0.07(±0.18) 0.1(±0.2) 0.45(±0.14)

Fig. 1. The workflow to construct an individual tau-PET network.

Z-score represents the connection strength between the 2 regions.
An individual ZCC matrix comprises 2556 edges connecting 72
brain regions in the Desikan–Killiany atlas (Desikan et al. 2006).

Following that, certain network features were assessed. For
the individual network, the sum in Z-score of ZCC matrix was
computed as the overall connectivity strength (S), which together
with SUVR was later regressed against MMSE scores. We bina-
rized the ZCC matrix and established a network threshold of 5%
significance, equating to a Z-score of 1.96 and indicating severe
irregularity at that edge. The global clustering coefficient (C) was
then quantified to quantify a network’s segregation by reflecting
the degree of aggregation between a particular node and nearby
nodes. The average clustering coefficient of a network with m
nodes is the average of the clustering coefficients at all nodes:

C = 1
m

∑

i

Ci = 1
m

∑

i

2ti

ki
(
ki − 1

) (2)

Ci is the clustering coefficient at node i, ki is the number of
edges connecting node i, and ti is the actual number of edges
between node i and adjacent nodes. Global efficiency (E) measures

the network integration by measuring the shortest path length
between all pairs of nodes:

E = 1
m(m−1)

∑
i�=j

1
dij

(3)

dij is the shortest path length between node i and j.

Intra- and inter-cluster abnormality examination
Additionally, 7 functional clusters in the brain were identified,
i.e. medial temporal lobe (MTL), cognitive control network (CCN),
executive control network (ECN), default mode network (DMN),
visual network (VIS), somatomotor network (SM), and language
network (LAN). Each cluster contains brain regions associated
with a certain function, and their definition can be found in
Espinoza et al. (2018). Within each cluster, the connectivity
strength was examined and compared with the composite SUVR
and MTL SUVR in terms of staging capability. Specifically, we are
interested in the sensitivity to early disease conversion before
MCI. We also computed Cohen’s effect size to measure the
effectiveness of the staging using each cluster-based biomarker.
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Furthermore, each functional cluster was regarded as a mega-
node and built 7 × 7 individual covariance network. The analysis
in-between clusters was similar to the one in the preceding
section with the main distinction is that a node is a cluster of
regions.

Analysis of group heterogeneity
The heterogeneity of the subjects was examined at each disease
stage. Pearson correlation coefficient of perturbation networks at
the same disease stage was calculated to highlight similarities
between all paired Z-scores. We then examined whether this het-
erogeneity affected the difference at the group level. Group-level
networks were built for the ADNI cohort’s control and patient
group, and their difference was compared against the average
individual-level network.

Analysis of patients with disease conversion
We examined subjects with confirmed disease conversion to see
how well the topological analysis reflected individual disease pro-
gression. One subject has converted from cognitively normal (CN-
) to early MCI, while another subject has converted from CN+ to
late MCI (demographical information in Supplementary Table S1).
Tau-PET networks before and after the patient’s conversion were
then built. The change in connectivity strength was compared
with the change in SUVR.

Statistical analysis
All statistical analyses were performed using the R language
(version 4.2.1, R Foundation for Statistical Computing). Pearson
correlation was used to assess the relationship for paired corre-
lation between 2 variables unless stated otherwise. Comparisons
of the biomarker among subject groups were made using the
Kruskal–Wallis test. Cohen’s effect size was used to measure the
effectiveness in separating subject groups. A threshold of 0.05 was
selected as the level of significance.

Results
Global topological features are associated with
disease progression
Figure 2 shows the histograms of global clustering coefficient and
efficiency at each subject group. For ADNI, both indices displayed
an upward trend from the CN- to the Alzheimer’s disease stage.
They were statistically different between CN+ and EMCI, EMCI
and LMCI, and LMCI and AD (all P < 0.05). For HABS, there is a sig-
nificant difference between CN- and MCI, as well as CN+ and MCI
(all P < 0.01). However, when comparing the CN- and CN+, neither
ADNI nor HABS shows a difference in the clustering coefficient or
efficiency. This suggests that the global topological features are
sensitive to the staging but not the change in a prodromal stage
that typically associated with early amyloid-β deposition.

Individual connectivity strengths are correlated
with cognitive assessment
Spearman correlation coefficients between the subject’s mean
Z-scores, composite SUVR, and corresponding MMSE scores are
shown in Fig. 3. For ADNI and HABS, Z-scores were inversely pro-
portional to MMSE with rho value of −0.55 and − 0.36, respectively.
SUVR was likewise found to be inversely proportional to MMSE
with slightly inferior correlations (rho value −0.51 and − 0.28). All
correlations were statistically significant (P < 0.01).

Topological features are better at staging
than SUVR
The tau accumulation patterns were correlated to disease stages.
The absolute mean Z-score within 7 functional clusters was
shown in Fig. 4 and Fig. 5. Connectivity in certain functional
clusters, as biomarkers, can differentiate 4 subject groups
(Fig. 4). For ADNI, the biomarkers that distinguished CN+ from
EMCI, EMCI from LMCI, and LMCI from AD (P < 0.01) were
intra-connectivity strength within MTL, ECN and LAN. The
intra-connectivity strength within LAN was most effective in
distinguishing the CN+ and EMCI groups. Furthermore, whether
topological biomarkers can differentiate CN subgroups (CN- and
CN+) was evaluated (Fig. 5). For ADNI, Z-scores within MTL, DMN,
and VIS provide significant differentiation (P < 0.01). Overall,
the performance of the topological biomarkers outperformed
SUVRs. Composite SUVR and MTL SUVR at various stages increase
with the disease progression, albeit their capability in early MCI
differentiation was restricted.

For the validation cohort HABS, again MTL, ECN, VIS, and DMN
contain the most significant biomarkers for distinguishing CN+
and MCI stages. Also similarly, MTL, CCN, and VIS performed bet-
ter than SUVRs in differentiating CN- and CN+ (P < 0.01). Cohen’s
effect sizes showed consistent results from above comparison for
both ADNI and HABS cohorts (Supplementary Tables S2 and S3).
Cluster connectivity Z-scores result in larger effect sizes observed
in all comparisons, again indicating topological analysis can dif-
ferentiate disease stages more effective than SUVR measures.

Figure 6 depicts the unidirectional connections between the
7 functional clusters, represented by a 7 × 7 truncated matrix.
For ADNI, the connections between functional clusters become
increasingly complex as the stage progresses from CN to AD.
There is a difference in connection abnormalities between
CN- and CN+ stages, although not statistically significant. The
connections associated with MTL demonstrated a high degree
of connectivity (MTL to VIS connection, Z-scores EMCI:2.16,
LMCI:5.49, AD:9.96). For HABS, the connectivity also tends to get
more complex as the stage progresses from CN- to MCI. When
progressing from CN- to CN+ stage, the connections from VIS to
ECN, DMN, SM showed significant anomalies (Z-scores of 2.41,
2.78, and 2.89, respectively). When progressing from CN+ to
MCI stage, the connections from VIS, MTL, and CCN to other
clusters are significant with most Z-scores greater than 2.16.
This demonstrates that MTL and VIS hubs are indication of
early Alzheimer’s disease which is congruent with the clusters
discovered in the previous section.

Connectivity pattern reveals heterogeneity in
patients
For ADNI, the mean Pearson correlation coefficients between sub-
jects were 0.97 ± 0.001(CN-), 0.95 ± 0.01(CN+), 0.94 ± 0.02(EMCI),
0.86 ± 0.06(LMCI), and 0.77 ± 0.07(AD). Similarly, for HABS, the
mean Pearson correlation coefficients were 0.97 ± 0.001(CN-),
0.92 ± 0.03(CN+), and 0.82 ± 0.05(MCI). This indicates that hetero-
geneity among patient groups increase as the disease progress.

For ADNI, correlation coefficients between the average
individual-level difference network and group-level difference
network were 0.53 (CN+), 0.49 (EMCI), 0.52 (LMCI), and 0.42 (AD),
all P < 0.01. However, when looking at each individual network,
they have low average correlation with the group-level differ-
ence network, which were 0.16 ± 0.08(CN+), 0.18 ± 0.06(EMCI),
0.17 ± 0.13 (LMCI), and 0.20 ± 0.08(AD). Similar findings were
found for HABS, implying that each subject contributed to group-
level difference differently.
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Fig. 2. Histogram of the global clustering coefficient and efficiency calculated from the scans at different stages (∗P < 0.05, ∗∗P < 0.01).

Converted subjects have more connectivity
changes than SUVR
Figure 7 shows the change of abnormal connectivity and SUVR
in the CCN for 2 subjects whose disease status converted in
36 months. Figure 7A shows a subject converted from CN- to EMCI
stage. After conversion, the composite SUVR decreased (−2.9%),
while the number of abnormal edges increased (48.9%). Figure 7B
shows a subject converted from CN+ to LMCI, with the change in
connectivity (102.5%) being more noticeable than the change in
SUVR (12.8%). This suggests the change in connectivity strength
from the baseline may be more sensitive to an individual’s subtle
or atypical tau accumulation.

Discussion and conclusion
Tau is the strongest driver of cognitive decline in Alzheimer’s
disease, which can be used to indicate disease progression

(Busche and Hyman 2020; D’Errico and Meyer-Luehmann 2020).
Individual spatial variability in tau deposition limits SUVR-
based quantification using PET imaging. Topological analysis
of tau deposition pattern may better represent Alzheimer’s
disease progression. We intend to study tau PET image from
topological perspective across Alzheimer’s disease stages at both
individual and group levels. Tau accumulation was measured
cross-sectionally and compared using proposed topological and
conventional regional methods. The derived network is not
a true functional connectivity network but a perturbation to
the population’s normal deposition level. Our goal was not to
“diagnose” Alzheimer’s disease but to test suitable biomarkers
for staging, early detection, and to associate with progression.
Overall, cluster-based topological data analysis outperformed
composite SUVR and medial temporal lobe SUVR. This is more
obvious when using the significant topological biomarkers to
identify the prodromal sign of Alzheimer’s disease. We also found
that compared with subjects having confirmed or developing
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Fig. 3. Spearman correlations between measures (network Z-scores/SUVR) and cognitive assessment scores (MMSE).

disease status, topological features of the normal-aged subjects
did not change much. This suggests staging of a subject at
prodromal stage is less likely to be misinterpreted as normal
aged condition. Using 18F-flortaucipir PET scans, these findings
were validated in ADNI and replicated in an independent cohort
HABS.

From a topological perspective, there is significant heterogene-
ity among patients even within the same disease group in both
data cohorts. This observation is consistent with previous studies
(Lambon Ralph et al. 2003; Murray et al. 2011; Whitwell et al. 2012;
Petersen et al. 2019; Young et al. 2022), which showed tau patho-
physiology has a focal aggregation and highly heterogeneous
pattern of progression through the brain. We believe the proposed
biomarkers will be sensitive to the change in tau deposition
after early treatment, which could be highly heterogeneous and

subtle. This can be indirectly proven in Fig. 7, where the change
in connectivity was more pronounced in some converted cases
than in visual or SUVR assessment. Moreover, it is of great value
to see whether the extracted topological pattern can predict the
individual treatment effect.

Our results are consistent in ADNI and HABS cohorts, sug-
gesting the modeling approach applies to a diverse population.
However, the overall staging results in ADNI were less accurate
than in HABS. The sampled demographic differences may explain
this phenomenon. Most ADNI patients were amnestic and over
the age of 70, while HABS patients had a more diverse range of
Alzheimer’s disease phenotypes that most started at a young age.
Another issue is, HABS did not differentiate early and late MCI
and did not contain any AD subjects. Additionally, differences in
scanner model and imaging protocols might affect our results.
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Fig. 4. Distributions of the average abnormal connectivity within each functional cluster and SUVRs for subject group at disease stages (∗P < 0.05,
∗∗P < 0.01).

Fig. 5. Distributions of the average abnormal connectivity within each cluster and SUVRs for CN- and CN+ group (∗∗P < 0.01).

Normalizing the PET images from different cohorts would allow
to build up a standardized analysis model.

The inclusion of partial volume correction could recover the
uptake especially for hippocampus that is known prone to partial
volume effect (Groot et al. 2022). As a result, discriminative accu-
racy between impaired and unimpaired individuals was shown to
improve in cross-sectional study (Schwarz et al. 2021). This can be
very important for early detection as the deposition can be subtle
and limited to small areas. The network connectivity in this study
also benefits from these corrections as the network was built up
from SUVR values at parcellated regions.

The small cohort size is a limitation of this study. FDA approved
18F-Flortaucipir PET in 2020, so the number of available scans may
be insufficient for robust statistical analyses especially for the
longitudinal study. Currently only 2 converted cases with follow-
up scans were investigated, but more are required to validate

the potential of the proposed framework in predicting the future
disease status. Additional data from other data cohorts would
help validate the current framework (Bucci et al. 2021; Leuzy
et al. 2022), especially for individuals with atypical Alzheimer’s
disease symptoms before age of 65. The second limitation is that
tau tangles are not Alzheimer’s disease specific. 18F-flortaucipir
both binds to non-Alzheimer’s disease tau isoforms and non-tau
processes (Xia et al. 2013; Schonhaut et al. 2017; Smith et al. 2017;
Leuzy et al. 2019). It also has considerable unspecific off-target
binding in the basal ganglia, hippocampus, and choroid plexus
(Barthel 2020), which may confound the accurate SUVR quantifi-
cation. Although we believe such an impact is less sensitive for a
topological analysis as suggested by the staging performance
in Figs 4 and 5, still, our findings need further replication
with second-generation tau-PET tracers with a higher specific
binding (Lohith et al. 2019; Mueller et al. 2020; Tagai et al. 2021).
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Fig. 6. Abnormal connectivity between functional clusters at different disease stages. The difference in connectivity matrices was assessed between
adjacent stages. In ADNI, all pairwise matrices were significantly different (P < 0.05) except the one between CN+ and EMCI (P = 0.06). In HABS, differences
between stages are all significant (P < 0.01).

Fig. 7. For subjects (A) and (B), the change of CCN connectivity and SUVR before and after disease conversion. The red nodes indicate abnormal brain
regions that appear after conversion, the green nodes indicate abnormal both before and after conversion, and the blue nodes indicate regions with
insignificant abnormal connections at all times. The yellow lines are the significant connections between connected nodes.

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/33/20/10649/7256791 by C

om
m

unity M
edical C

enters user on 01 M
arch 2024



Ding et al. | 10657

Supplementary material
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